MTH101 2nd Quiz

Date: 1 December 2014

Question # (01) $x^2-9 = \dots$
(x-3)^2
(x+3)^2
x-3 x+3
x+3 x+3
Question # (02) Usually the number that signifies the idea of $f(x)$ being as close to limit L as want to be must be a/an
Integer
Natural number
Small positive number.
Small negative number.
Question # (03) A function f is said to be continuous on a closed interval [a, b] if is continuous from the right at "a" and "f" is continuous from the left at "b" and "f" is continuous on
(a,b]
[a,b)
[a,b]
(a, b)
Question # (04) If f is continuous on $[a, b]$, and if $f(angel)$ and $f(beer)$ have opposite signs, then there is one solution of the equation $f(x) = 0$ in the interval (a, b) .
at most
exactly
at least

not more than

Question # (05) e (epsilon) used in the definition of limit can be a negative number.

True

False

Question # (06) If a function is differentiable at a point then it is continuous at that point. The converse is

False

True

Question # (07) If the function f and g are continuous at c, then f + g is at c.

Discontinuous

Continuous

Question # (8)

If f is continuous on a closed interval [a, b] and C is any number between f(angel) and f(beer), inclusive, then there is at least one number x in the interval [a, b] such that ------

f(x) is not equal to C

$$f(x) = C$$

f(x)>C

f(x) < C

Question # (9) |x-3| < 1 implies.....

-4 < x < 4

2 < x < 4

-2 < x < -4

Question # (10): If for any positive number e(epsilon) we can find d (delta) such that |(3x-5)-1| < e, if x satisfies 0 < |x-2| < d Then f(x) =

3x-5- 1

x-2

3x-5

None of these