

<u>Junaidfazal08@gmail.com</u> Bc190202640@vu.edu.pk CS501-Advanced Computer (Solved Macq's) LECTURE FROM (23 to 45)

FOR MORE VISIT VULMSHELP.COME

JUNAID MALIK 0304-1659294

- 1. A software routine performed when an interrupt is received by the computer is called as
 - a. Interrupt
 - b. Interrupt handler
 - c. Exception
 - d. Trap
- 2. Which of the following pins of the processor is designated for maskable interrupts?
 - a. NMI
 - b. MI
 - c. INTR
 - d.

RINT

- $3. \quad ET =$
- a. CP x IC x T
- b. CPI x IC x T
- c. CPI / IC x T
- d. CPI x IC/T
- 4. By which file extension does the FALCON-A assembler loads a FALCON-Aassembly file?
 - a. .asmfa
 - **b.** .org
 - c. .exe
 - d. .src
- 5. In which one of the following methods, does the CPU poll to identify the interrupting module and branches to an interrupt service routine on detecting aninterrupt?

w.vulmshelp.c

- a. Daisy chain
- b. Software poll
- **c.** Multiple interrupt lines
 - d. All of given option

AL-JUNAID TECH INSTITUE signal has output direction with respect to printera. 0 < 7...0 >b. STROBE# c. INT# d. ACKNLG# 6. is said to occur when a 0 is received instead of a stop bit a. Framing error **b.** Party error c. Block error **d.** Over-run error 7. A component connected to the system bus and having control of it during aparticular bus cycle is called **a.** Slave component b. Master component **c.** System bus d. Buffer component 8. The information about the interrupt vector is given in 8-bit from 0 to 7, which istranslated on the data bus to bit a. 16 to 32 **b.** 11 to 18 **c.** 0 to 7 **d.** 8 to 15 9. An interface that can be used to connect the microcomputer bus to iscalled as I/O port a. Flip flop **b.** Memory c. Peripheral devices **d.** Multiplexers 10. allows a peripheral to read and write memory without intervention by the **CPU** a. Programmed I/O **b.** Interrupt driven I/O c. Direct memory access(DMA)

d. Polling

11.Every interrupt handler has an interrupt return (IRET) instruction, this
instruction is an example ofreturn
a. NEAR
b. <mark>FAR</mark>
c. SHORT
d. RELATIVE
12. Which I/O technique will be used by a sound card that may need to access datastored i
the computer's RAM?
a. Programmed I/O
b. Interrupt driven I/O
c. Direct memory access(DMA)
d. Polling
13. What should be the behavior of interrupt during critical section?
a. <mark>Must remain disable</mark>
b. Must remain enable
c. Depends on current situation
d. Only important interrupts be enable
14. Identify the type of serial communication error condition in which "0" isreceived
instead of stop bit(which is always a "1")
a. <mark>Framing error</mark>
b. Parity error
c. Overrun error
d. Under run error
15. The Pentium does allow the use of some part of itsaccumulator register EAX
a. 8 bits (30304-1659294)
 b. 16 bits c. 32 bits d. 64 bits
c. 32 bits
d. 64 bits
16. is an electrical pathway through which the processor communicates
with the internal and external devices attached to the computer
a. <mark>Computer bus</mark>
b. Hazard
c. Memory

d. Disk

L-JUNAID TECH INSTITUE 17. Where does the processor store the address of the first instruction of the ISR? a. Interrupt vector **b.** Interrupt request c. Interrupt handler **d.** All of the given options 18. is the time needed by the CPU to recognize (not service) aninterrupt request. a. Interrupt latency **b.** Response deadline c. Timer delay d. Throughput 19. At the start of the transfer operation in synchronous communication, the masteractivates signal. a. Read **b.** Enable **c.** Data d. Acknowledge 20. Which is the last instruction of the ISR that is to be executed when the ISR terminates? a. IRET **b.** IRQ c. INT d. NMI 21. Which one of the following methods for resolving the priority makes use ofindividual bits of a priority encoder? b. Asynchronous Priority c. Parallel Priority d. Semi-synchronous B. . . **d.** Semi-synchronous Priority 22. If a character is not available at the beginning of an interval, an is said to occur.

22.If a character is not available at the beginning of an interval, an_______is saidto occur.

a. Under-run Error

23.Tri-state buffers are used for removing______.

a. Instruction collision

b. bus collision

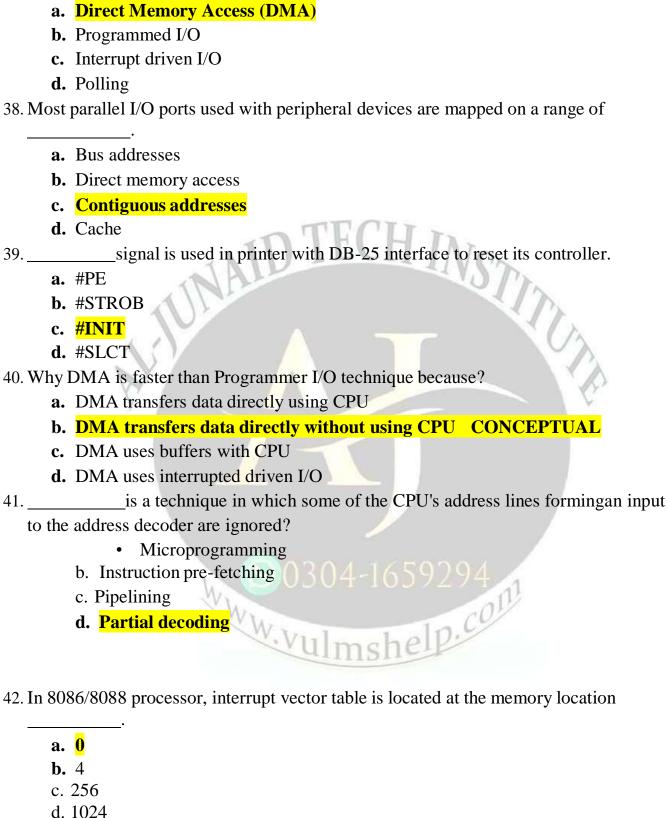
c. Instruction contention

d. bus contention

24. When a particular sector is found, the data is transferred to______

- b. I/O module
- c. Cache memory
- **d.** Instruction register
- 25. Identify the following type of serial communication error condition:

"The prior character that was received was not still read by the CPU and is overwritten by a new received character."


- a. Framing error
- **b.** Parity error
- c. Overrun error
- **d.** Under-run error
- 26. Taking control of the system bus for a few bus cycles is known as
 - a. Bus Stealing
 - b. Cycle Stealing
 - c. Cycle Transferring
 - **d.** None of given
- 27. The average latency to the desired data is halfway round the disk so, what willbe the average rotation latency of the disk rotates at 20,000rpm.
 - **a.** 1.25ms
 - b. **1.5ms**
 - **c.** 1.0ms
 - **d.** 2.0ms
- 28. What is the status of the ACKNLG# signal when a character is completelyreceived by the printer?
 - **a.** It goes from low to high
 - **b.** It goes from high to low page 239
 - **c.** It toggles its state
 - **d.** It remains unaffected
- 29.Interrupt driven I/O is better than_____
 - a. **Polling**
 - **b.** Data forwarding
 - c. Stall
 - d. First In First Out
- 31. Select the parts of a hard disk.
 - a. Header only
 - b. Data section and a trailer
 - c. Data section only

- d. Header, data section and a trailer
- 32. In which one of the following methods for resolving the priority, the device with the highest priority is placed in the first position, followed by lower- priority devices up to the device with the lowest priority, which is placed last in the series?
 - a. Asynchronous
 - b. Daisy-Chaining Priority
 - **c.** Parallel
 - **d.** Semi-synchronous
- 33. Identify the following type of serial communication error condition in which nocharacter is available at the beginning of an interval.
 - a. Framing error
 - **b.** Parity error
 - c. Overrun error
 - d. Under-run error
- 34. In the little-endian format exchanging data between computer, the data transmitted by one will be received in a "swapped" form by the other.
 - a. Organized
 - **b.** Signals
 - c. Swapped
 - d. Arranged
- 35. The source file of FALSIM should contain_____text only.
 - a. Unicode
 - b. ASCII
 - c. ANSI
 - d. UTF

Ww.vulmshelp.com

- 36. A component connected to the _____ and with which the master component can communicate during a particular bus cycle. Normally the CPU with its bus control logic is the master component.
 - **a.** Slave component
 - b. System bus
 - c. Master component
 - d. Bus component
- 37. In which technique does the hardware directly access host memory for readingor writing

AL-JUNAID TECH INSTITUE independent of CPU? a. Direct Memory Access (DMA) b. Programmed I/O

43. When an I/O module has a capability of executing a specific set of instructions for specific I/O devices in the memory without the involvement of CPU is called _____

a. Selector Channel

- b. I/O Channel
- c. I/O processors
- d. Cycle Stealing
- 44. How does DMA saves CPU time?
 - a. By controlling transfer between I/O devices and memory directly
 - **b.** By storing all data in a buffer to be later transferred to the CPU
 - c. By periodically polling
- **d.** By issuing a interrupt request to the CPU to request attention 45.Connection to a CPU that provides a data path between the CPU and external

devices, such as a keyboard, display, or reader is called _____

- a. Buffer
- b. I/O port
- c. Memory mapping
- d. Processor
- 46. _____lets the user execute the program, one instruction at a time.
 - a. Single Step
 - b. Execute
 - c. Change PC
 - d. List File
- 47. In _____a separate address space of the CPU is reserved for I/O operations.
 - a. Isolated I/O
 - b. Memory Mapped I/O
 - c. All of above
 - d. None of above

©0304-1659294 ww.vulmshelp.com

- 48. Which one of the following is NOT a technique used when the CPU wants toexchange data with a peripheral device?
 - a. Direct Memory Access (DMA)
 - b. Interrupt driven I/O
 - c. Programmed I/O
 - d. Virtual Memory
- 49. A computer interface is an _____ circuit that matches the requirement of thetwo subsystems between which it is connected.
 - a Digital

AL-JUNAID TECH INSTITUE b. **Electronic** c. Primary d. Obituary 50. the device usually means reading its status register every so oftenuntil the device's status changes to indicate that has completed the request. a. Interrupting b. Masking c. Polling d. Executing 51. For input ports, the incoming data should be placed on the data bus only during the I/O read bus cycle. For this purpose, _____are used. a. Flip Flops b. Tri-state Buffers c. AND Gates d. Registers 52. Which of the following is not true regarding serial communication? a. Easy to implement b. Inefficient c. High cost d. Slow 53. In a printer with DB-25 interface, signal is better for edgetriggered systems. a. BUSY# b. PE# c. ACKNLG# d. STROB# 54. The can be determined from the number of platters and the number of tracks. a. Speed of processing b. Execution time c. Storage capacity d. Latency 55. The directive is used to define variables.

a. .equ

b. .db

C CW

AL-JUNAID TECH INSTITUE d. .org 56. _____ means that the CPU should input data from an input device only when the device is ready to provide data and send data to an output device onlywhen it is ready to receive data. a. Data location

- b. Data synchronization
- c. Data transfer
- d. Asynchronous transmission
- 57. The main issue/s in error control is/are_____
 - a. Detection of Error
 - b. Correction of Error
 - c. Both Detection of Error and Correction of Error
 - d. Avoidance of Error
- 58. _____signal has input direction with respect to printer
 - a. BUSY
 - b. STROBE#
 - c. PE#
 - d. ACKNLG#
- 59. A parallel port can be considered to be a big gate.
 - a. OR
 - b. AND
 - c. NOR
 - d. NOR
- 60. Every time you press a key, an interrupt is generated.

This is an example of

- a. Hardware interrupt
- b. Software interrupt
- c. All of the given
- d. None of the given
- 61. How Interrupt driven I/O is better than polling because?
 - a. Interrupt driver I/O is easy to design
 - b. Interrupt driver I/O is enhanced version of polling
 - c. Interrupt driver I/O does not waste time on checking which device isavailable
 - d. Interrupt driven I/O is easy to program62. How
- can you define an interrupt?
 - a. A process where an external device can speedup the working of the microprocessor
 - b. A process where memory can speed up programs execution speed

AL-JUNAID TECH INSTITUE
c. A process where an external device can get the attention of the
microprocessor
d. A process where input devices can takeover the working of the
microprocessor
63is/are example(s) of synchronous communication.
a. Register to Register
b. Register to Memory
c. Memory to Memory
d. All of the given
depends upon the present position of the head and the position of the required sector. a. Direct memory Access b. Execution time c. Throughput d. Seek time
a. Direct memory Access
b. Execution time
c. Throughput
d. Seek time
di Secritari
65. Which one of the following is the memory organization of SRC processor?
□ 2^8 * 8 bits □ 2^16 * 8 bits □ 2^32 * 8 bits (Page 46) □ 2^64 * 8 bits 66. Type A format of SRC uses instructions
oo. Type 11 format of Sixe uses instructions
□ Two (Page 47)
□ three
□ four □ five ○ 0304-1659294
67. The instruction will load the register R3 with the contents of the memory location M
[PC+56]
□ Add R3, 56
□ lar R3, 56 □ <mark>ldr R3, 56 (Page 47)</mark>
str R3, 56
68. Which format of the instruction is called the accumulator?
□ 3-address instructions
□ 3-address instructions□ 2-address instructions
□ 2-address instructions □ 1-address instructions (Page 32)
□ 0-address instructions
69. Which one of the following are the code size and the Number of memory bytes
respectively for a 2-address instruction?
□ A bytes 7 bytes

AL-JUNAID TECH INSTITUE
□ 7 bytes, 16 bytes (Page 36)
□ 10 bytes, 19 bytes
□ 13 bytes, 22 bytes
70. Which operator is used to name registers, or part of registers, in the Register Transfer
Language?
$\Box := (Page 66)$
\Box &
The transmission of data in which each character is self-contained write with its own start on
71. The transmission of data in which each character is self-contained units with its own start and stop bits is
Asynchronous
□ Synchronous
□ Parallel
72. Circuitry that is used to move data is called
□ Bus
□ Port
 □ All of the given options 72. Circuitry that is used to move data is called □ Bus □ Port □ Disk □ Mamory
□ Memory
73. Which one of the following is NOT a technique used when the CPU wants to exchange
data with a peripheral device?
□ Direct Memory Access (DMA).
□ Interrupt driven I/O
□ Programmed I/O
□ Virtual Memory (Page 268)
74. Every time you press a key, an interrupt is generated. This is an example of
□ Hardware interrupt (Page 275)
□ Software interrupt
□ Exception
□ All of the given
75. The interrupts which are pre-programmed and the processor automatically finds the
address of the ISR using interrupt vector table are
□ Maskable
□ Non-maskable
□ Non-vectored
□ Vectored (Page 277)
76. Which is the last instruction of the ISR that is to be executed when the ISR terminates? □ IRET (Page 278)
□ IRQ □ INT
□ NMI
77. If NMI and INTR both interrupts occur simultaneously, then which one has the precedence
over the other
□ NMI (Page 279)

AL-JUNAID TECH INSTITUE					
IRET					
□ All of the given					
78. Identify the following type of serial communication error condition:					
The prior character that was received was not still read by the CPU and is over					
written by a new received character.					
□ Framing error					
□ Parity error					
□ Overrun error (Page 240)					
□ Under-run error					
79the device usually means reading its status register every so often until the					
device's status changes to indicate that it has completed the request.					
□ Executing					
□ Interrupting					
□ Masking □ Polling					
- Tomig					
80. Which I/O technique will be used by a sound card that may need to access data stored					
in the computer's RAM?					
□ Programmed I/O					
□ Interrupt driven I/O					
□ Direct memory access(DMA) □ Polling					
□ Polling 81. For increased and better performance we use which are usually made of glass.					
□ Coaxial Cables					
☐ Twisted Pair Cables					
□ Fiber Optic Cables (Page 390)					
□ Shielded Twisted Pair Cables					
82. In if we find some call party busy we can have provision of call waiting.					
□ Delay System (Page 381)					
□ Loss System					
□ Single Server Model					
None of the given					
83. In technique memory is divided into segments of variable sizes depending upon the					
requirements.					
Paging Segmentation (Page 365)					
□ Segmentation (Page 365) □ Fragmentation					
□ None of the given					
84. For a request of data if the requested data is not present in the cache, it is called a					
□ Cache Miss (Page 358)					
□ Spatial Locality					
□ Temporal Locality					
□ Cache Hit					
85. An entire memory can be erased in one or a few seconds which is much faster than					
EPROM.					
PROM					

ache

AL-JUNAID TECH INSTITUE
□ EEPROM
□ Flash Memory (Page 356)
86chips have quartz windows and by applying ultraviolet light data can be erased from
them.
□ PROM
□ Flash Memory
□ EPROM (Page 356)
□ EEPROM
87. Thesignal coming from the CPU tells the memory that some interaction is required
between the CPU and memory.
□ REQUEST (Page 350)
□ COMPLETE
□ None of the given
88is a combination of arithmetic, logic and shifter unit along with some multiplexers and
control unit.
□ Barrel Rotator
□ Control Unit
□ Flip Flop
ALU (Page 347)
89. In Multiple Interrupt Line, a number of interrupt lines are provided between the modules
☐ CPU and the I/O (Page 283)
☐ CPU and Memory ☐ Memory and I/O
□ None of the given
90. The data movement instructionsdata within the machine and to or from input/output
devices.
□ Store
□ Load
□ Move
□ None of given (Page 141)
91. CRC has overhead as compared to Hamming code.
□ Greater
□ Lesser (Page 329)
□ None of the given
 □ Equal □ Greater □ Lesser (Page 329) □ None of the given 92. The is w-bit wide and contains a data word, directly connected to the data bus
which is b-bit wide memory address register (MAR).
□ Instruction Register(IR)
□ memory address register (MAR)
□) memory Buffer Register(MBR) (Page 350
□ Program counter (PC)
93. Intechnique, a particular block of data from main memory can be placed in only one
location into the cache memory.
□ Set Associative Mapping
□ Direct Mapping (Page 360)
□ Associative Mapping
—

AL-JUNAID TECH INSTITUE						
94indicate the availability of page in main memory.						
□ Access Control Bits						
□ Used Bits □ Presence Bits						
□ None of the given						
95. TheRTN describes the overall effect of instructions on the programmer visible						
registers.						
► Abstract						
► Concrete A has laste						
► Absolute ► Basic						
► Dasic						
96. The instruction set is ofimportance in governing the structure and function of the						
pipeline.						
► Least ► Primary						
► Secondary						
► No						
97is the most general and least useful performance metrics for RISC machines.						
► MIPS						
Instruction Count						
Number of registersClock Speed						
98. A provides four functions: Select, DataIn, DataOut and Read/Write.						
provides four functions. Select, Butuin, Butuout and Read, write.						
► ALU						
▶ Bus						
► Register (3)0304-1659294						
► Memory Cell (Page 351)						
99. We can classify or partition the SRC instructions by their overallbehavior.						
► Register transfer						
► Memory transfer						
► Execution						
► Logical						
TheRTN describes detailed register transfer steps in the data path that						
produce the overall effect.						
Abstract						
► Concrete A has lute						
► Absolute ► Basic						
101 All members of the MC68000 family are processors						

AL-JUNAID TECH INSTITUE
► 32-bit ► 16-bit
► 64-bit
► 8-bit
Operations refers to a processor that can issue more than one instruction simultaneously.
► Macro
► Micro
► Scalar
► Superscalar
Exceptions which areoccur in response to events that are paced by
the internal processor clock.
 Asynchronous Synchronous Internal
AsynchronousSynchronous
Internal
► External
104. In the hazard detection by hardware, resolved by pipeline stalls, if the instructions
are in the adjoining stages, then the hazard must be detected in stage
• 4
2 3
105.
1-bit sign, 8-bit exponent, 23-bit fraction and a bias of 127 is used for Binary Floating
Point Representation
▶ Double precision
► Single Precision (Page 348)
► All of above
► All of above ► Half Precision 106.
The average rotational latency if the disk rotated at 20,000rpm is
▶ 0.5 ms
► 3.5 ms
► 2.5 ms
► 1.5 ms (Page 324)
107. A hard disk with 5 platters has 1024 tracks per platter, 512 sectors per track
and 512 bytes/sector. What is the total capacity of the disk?
► 1.5 GB
► 1 GB (Page 324) ► 2 GP
► 2 GB ► 2 GB

108. Where does the processor store the address of the first instruction of the ISR?

 ☐ Interrupt vector (Page 277) ☐ Interrupt request ☐ Interrupt handler ☐ All of the given options 109. In, a separate address space of the CPU is reserved for I/O operations.
□ Isolated I/O (Page 236) □ Memory Mapped
□ I/O All of above
□ None of above
 110. is the time needed by the CPU to recognize (not service) an interrupt request. Interrupt Latency (Page 279) Response Deadline Timer delay Throughput 111. How can you define an interrupt?
□ Interrupt Latency (Page 279)
□ Response
□ Deadline Timer
□ delay Throughput
111. How can you define an interrupt?
☐ A process where an external device can speedup the working of the
microprocessor
A process where memory can speed up programs execution speed
A process where an external device can get the attention of the
microprocessor A process where input devices can takeover the working of the microprocessor
112. A software routine performed when an interrupt is received by the computer is called
as
□ Interrunt
□ Interrupt handler
☐ Interrupt handler ☐ Trap 113. In which one of the following methods for resolving the priority, the device with the highest
in which one of the following methods for resolving the priority, the device with the highest
priority is placed in the first position, followed by lower-priority devices up to the device with
the lowest priority, which is placed last in the series?
 □ Asynchronous □ Daisy-Chaining Priority
□ Daisy-Chaining Priority □ Parallel
□ Semi-synchronous
114.
Identify the type of serial communication error condition in which A 0 is received instead of a stop bit (which is always a 1)?
□ Framing error (Page 240)

AL-JUNAID TECH INSTITUE
Parity
error
□ Overrun
error
□ Under-run
error
115. Identify the following type of serial communication error condition in which no
character is available at the beginning of an interval.
□ Framing
error
error
□ Overrun
error
Under-
run error
240) 116.
Ais a wiring scheme in which, for example, device A is wired to device B, device B is
wired to
device C, device C is wired to device D etc.
□ Daisy chain
□ DMÅ
□ Interrupt
driven I/O
□ Polling
117.
Anis the memory address of an interrupt handler.
W 0304 1037274 11
☐ Interrupt vector ☐ Interrupt service * ☐ routine Exception
□ Interrupt service *
□ routine Exception
□ Mask
118.
The conversion of numbers from a representation in one base to another is known as
Radix Conversion (Page 333)
□ Number
Representation
representation
□ Hexadecimal
Representation
119.

AL-JUNAID TECH INSTITUE
the Microprocessor
□ Maskable
□ <mark>Non-maskable</mark>
□ Non-vectored
□ Vectored
120.
interrupts are usually associated with the
□ software hardware
□ <mark>software</mark>
□ machine
□ internal
121.
 How Interrupt driven I/O is better than polling because? Interrupt driver I/O is easy to design Interrupt driver I/O is enhanced version of polling. Interrupt driver I/O does not waste time on checking which device is available.
(Page 274)
 Interrupt driven I/O is easy to program. 122. In Single-Precision Binary Floating Point Representation the exponent is
• 8 bits (Page 348)
• 11 bits
• 1 bit
• 23 bits 123.
Theis m-bits wide and contains memory address generated by the CPU directly
connected to the m-bit wide address bus Booth Recording
 memory address register (MAR) (Page 350) memory Buffer Register (MBR) Program counter (PC)
• memory Buffer Register
(MBR)
• Program counter (PC)
 InstructionRegister(IR) 124.
A combination of parallel and sequential hardware used to build a multiplier is known as
Parallel Array

Multiplier Booth
Recording
Series Parallel Multiplier (Page 342)
None of the given

The register file is a collection of bit wide registers used for data transfer between memory and the CPU.

- ? 8 ? 16
- 32 (Page 350) ?
- 64

126.

of an m digit number x is xc'=bm -1- x The

- Radix Compliment
- **Diminished Radix Compliment (Page 337)**
- Signed Magnitude Form
- Biased Representation

127.

Shifting of the radix point towards left or right

- Shifting
- Logical
- Shift Right Shift
- **Scaling** (Page 335)

128.

adder circuit we feed carry out from the previous stage to the next stage and so on. In

- Ripple Carry Adder (Page Carry Look Ahead Adder
 Complement Adder
 2's Complement Adder
- Complement Adder

129.

are computed by the ALU and stored in processor status register.

- **Condition codes(Page 334)**
- Conditional **Branches** Fraction
- Division
- None of the

given

130.

A_____signal decides whether the input word should be shifted or bypassed.

- Control Read
- Shift/bypass (Page

346)

- Control Write
- None of the given

131.

In_____recording ,bits are encoded in pairs so there are only ' n/2' additions instead of 'n'.

- Booth Recording
- Bit Pair Recording (Page 343)
- Integer division
- None of the given

132.

Given an m-digit base b number x, the of x is $xc = (bm-x) \mod bm$

 Radix Compliment (Page

337)

- Diminished Radix
- Compliment Signed
- Magnitude Form

Biased Representation

133.

For_____of an error we just need to know that there exists an error.

- Detection (Page 328)
- Correction
- Both Correction and Detection
- None of the give

134.

In Double-Precision Binary Floating Representation the function is_

- 23 bits
- 52 bits (Page 348)
- 1 hite

1 bit

135.

_is the simplest form for representing a signed number

- Based representation
- Diminshed Redex Complement Form
- Sign Magnitude Form (Page 336)
- None of the given

136.

In computers, floating-point representation uses_to encode significand, exponent and their sign in a single word

- Decimal Numbers
- Binary Numbers (Page 347)
- Octal Numbers
- Hexa decimal Numbers

137.

Which one of the following registers store a previously calculated value or a value loaded from the main memory?

- Accumulator
- ► Address Mask
- ► Instruction Register
- ► Program Counter

138.

Which one of the following portions of an instruction represents the operation to be performed?

- ► Address
- ► Instruction code
- ► Opcode (Page 33)
- **▶** Operand

139.

>>0304-1659294

_____control signal enable the input to the PC for receiving a value that is currently on the internal processor bus.

► LPC (Page 172)

- ► INC4
- ► LC
- ► Cout

140.

What is the instruction length of the FALCON-E processor?

- 8 bits
- 16 bits
- 32 bits (Page 134)
- 64 bits

141.

Which type of instructions enables mathematical computations?

- ► Arithmetic (Page 92)
- ► Control
- ► Data transfer
- ► None of the given

142.

What is the instruction length of the SRC and Falcon E processor?

- ▶ 8 bits
- ▶ 16 bits
- **▶ 32 bits (Page 134)**
- ▶ 64 bits

143. An instruction that specifies one operand in memory and one operand in a register would be known as a address instruction.

- **►**2-1/2
- ► 1-1/2 (Page 37)
- **>**0
- ▶2

144.

In floating point representations__is also called mantissa.

- ► Sign
- **▶** Base
- ► Significant (Page 347)
- **►** Exponent

145. What should be the behavior of interrupts during critical sections?

- ► Must remain disable (Page 197)
- ► Must remain Enable
- ► Can be either enable or disable
- ► only important interrupts be enable

148. Which one of the following is a binary cell capable of storing one bit of information?

- **▶** Decoder
- ► Flip-flop (Page 76)
- ► Multiplexer
- **▶** Diplexer

149. Which type of instructions load data from memory into registers, or store data from registers into memory and transfer data between different kinds of special-purpose registers?

- ► Arithmetic
- **►** Control
- **▶ Data transfer (Page 88)**
- ► Floating point 150.

What does the RTL expression [M(1234)] means?

- ► The contents of memory whose address is 1234.
- ► The contents of data register 1234
- ► The effective address of register 1234
- ► The address of memory whose address is 1234.

151. Which one of the following languages presents a simple, human-oriented language to specify the operations, register communication and timing of the steps that take place within a CPU to carry out higher level (user programmable) instructions?

- ► Assembly Language
- ► OOP(Object Oriented Language)
- ► RTL (Register Transfer Language)
- ► UML(Unified Modeling language)

152.

Which one of the following instructions is used to load register from memory using a relative address?

- ▶ la
- ▶ lar
- **► ldr** (Page 145)
- **►** str

153.

Taking control of the system bus for a few bus cycles is known as

- ► Bus Stealing
- ► Cycle Stealing (Page 317)
- ► Cycle Transfering
- ► None of given

154. In ---- address mode, the actual data is stored in the instruction.

- **▶** Direct
- ► Indirect
- **►** Immediate
- ► Relative

155. Keyboard Interrupt (INT 9) is an example of

interrupt.

- **►** Hardware
- **►** Software

№0304-1659294

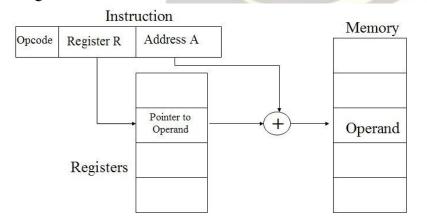
156. A user program has to delete a file. The user program will be executing in the user mode. When it makes the specific system call to delete the file, an interrupt will be generated, this will cause the processor to halt its current activity and switch to supervisor mode. Once in supervisor mode, the operating system will delete the file and then control will return to the user program. This is an example of

- ► Hardware interrupt
- ► Software interrupt (Page 275)
- ► Exception
- ► All of the given

157. By which file extension does the FALCON-A Assembler loads a FALCON-A assembly file?

- org.
- ▶ .exe
- ► .src

157.


All -----interrupts have priority over all interrupts

- ▶ internal, external (Page 279)
- ► external, internal

158. The can also be used anywhere in the source file to force code at a particular address in the memory.

- ▶ .end directive
- ▶ .start directive
- ▶ .label directive
- ▶ .org directive (Page 298)

Question No:106

In this figure, the constant value specified by the immediate field is added to the register value, and the resultant is the index of memory location that is referred i.e. Effective Address = $A + (content\ of\ R)$.

Identify the addressing mode.

- **▶ Displacement(Page 139)**
- ► Immediate
- ► Indexed
- ► Relative

159. In which one of the following addressing modes, the operand does not specify an address but it is the actual data to be used.

▶ Indirect

► Immediate

► Relative

160. When is the "Divide error interrupt" generated?

- ▶ When an attempt is made to divide by decimal number
- ► When an attempt is made to multiply by zero
- ▶ When an attempt is made to divide by zero (Page 197)
- ▶ When negative number is stored in a register

161. Which one of the following is a term used to describe a storage systems' resilience to disk failure through the use of multiple disks and by the use of data distribution and correction techniques?

- ► Interrupt handling
- ► Programmed I/O
- ► Polling
- **RAID** click here for detail

162. _____is the time for first bit of the message to arrive at the receiver including delays.

- ► Transmission Time
- ► Latency
- ► Transport Latency
- ► Time of Flight (Page 388)

163.

Falcon-A Simulator loads a FALCON-A binary file with a extension and presents its contents into different areas of the simulator.

- ▶ .bin
- **▶** .binfa (Page 5)
- ► .fa
- ► None of the given

164. In machines where instructions can be executed in parallel or out of order, two additional hazards can occur: WAW and ------

- ▶ None fo the given
- **► WAR**
- ► RAW
- ► RAR

165. For of an error we just need to know that there exists an error.

- ► None of the given
- **▶** Correction
- **▶** Detection (Page 328)
- ▶ Both Correction and Detection

166. Identify the type of serial communication error condition in which 0 is

received instead of a stop bit (which is always a 1)?

- ► Framing error (Page 240)
- ► Parity error
- ► Overrun error
- ► Under-run error
- is/are defined as the number of instructions processed per second 167.
- ► Throughput (Page 203)
- ► Latency Time to process 1 request.
- ► Throughput and Latency
- ▶ None of the given
- 168. Raid Level is not a true member of the RAID family.
- (Page 330)
- $\triangleright 2$
- **>**3
- 169. Which one of the following is an address (binary bit pattern) issued by CPU?
- ► Memory
- ► Effective (Page 39)
- **▶** Base
- ▶ Next instruction
- 170. Which one the following interrupts is initiated with an INT instruction?
- ► Hardware
- **►** Software
- ▶ Both hardware and Software
- ▶ None of the given
- 171. An -- is a program that takes basic computer instructions and converts them into a pattern of bits that the

computer's processor can use to perform its basic operations.

- **►** Assembler
- **▶** Debugger
- ► Editor
- **▶** Console
 - 172. Dirty bit is a status bit which is used to indicate whether
 - a. The block is accessible or not
 - b. The block has been modified or not

page 327

c. The block is valid or not

d. The block has been accessed frequently or not
173. In 1x8 memory cell arrangement, each block is connected through
a bi-directional data bus implemented withtri-state buffer(s).
a. 1
b. 2 page 317
c. 4
d. 8
174. The register file is a collection ofbit wide registers used for data
transfer between memory and the CPU.
a. 8
b. 16
c. 32 page 316
d. 64 175. Human works with base 10 and computers work with base
a. 8
b. 10
c. 2 page 301
c. 16
176. Raid leveldistributes the parity strips across all disks.
a. 2
b. 3
c. 4
d. 5 page 300
177. Shifting of the radix point towards left or right is called
a. Shifting b. Logical Shift c. Right Shift d. Scaling page 302
b. Logical Shift
c. Right Shift
d. Scaling page 302

1 / 8. III COII	iputers, moating-po	int representation uses	_to encode
signifi	cand, exponent and	their sign in a single word	
a. D	ecimal Numbers		
	ry Numbers	page 313	
c. Octal N			
	ecimal Numbers	1	.1 . 1 .
		d contains a data word, dire	•
		e memory address register (
	ory Buffer Regist	er (MBR)	page 316
_	ram Counter (PC)		
	ection Register (IR)		
	ory Address Regist		
		ip with 2 ^m words of s bits	increases the
numbe	r ofbits it can store	by only a factor of	7.
a. $s/(s+1)$	11/1		TTU
b. (s+1)	10-2	e 320	1/7.
c. $(s+2)/s$			103
d. s^2/s	n blook in apaba is		
V 9 /		identified uniquely by its r	main memory
DIOCKI	umber, referred to	as	×
	i. Ticket		
	ii. Serial		
c. Tag d. Label	page	323	
	onversion of number	ers from a representation in	one base to
	r isknown as .	is from a representation in	one base to
	x Conversion	page 301	
	per Representation		1
	nal representation	ntion ne data can exist in memor	7
	decimal Representa	ation 1 alp	
		ne data can exist in memor	w hiererchy
		ne needs updating mechanis	
	•	g used. This is the problem	01
	ache Miss		
	pirty bit	225	
c. Cach d. Write <i>A</i>	e Coherence	page 327	
u. wille F	MIOCALE		

Raid Level is not a true member of the RAID family.
a. 0 page 298
b. 2
c. 3
d. 4
185. In Double-Precision Binary Floating Point Representation the
fraction is
a. 23 bits
b. 52 bits page 314
c. 11 bits
d. 1 bit
186is nonvolatile and may be written into only once.
 a. PROM page 321 b. EPROM c. EEPROM d. Main memory
b. EPROM
c. EEPROM
187 is non volatile i-e it retains the information in it when power is
removed from it
a. RAM
b. Hard Disc
c. ROM page 320
d. Cache
188. A typical one level decoder hasinput(s) and output(s).
i. n, n
ii. 2^n, n
iii. $n, n^2 \cap 1 \cap 2 \cap 4 \cap 1 \cap 5 \cap 1 \cap 4$
d. n, 2^n page 318
189. Along with the information bits, we add up another bit, which is called?
a. Start bit
b. Header bit
c. Parity bit page 297
d. Stop bit
190. Which of the following is NOT a function of memory cell?
a. Activate page 317
b. DataIn
c. DataOut
d. Read/Write

191. The of an m digit number x is $\{x^c\} = \{b^m\} - 1 - x\}$	
a. Radix Compliment	
b. Diminished Radix Compliment page 304	
c. Signed Magnitude Form	
d. Biased Representation 192.	The
	and
	um
a. Main memory and secondary memory	
b. The CPU and the physical memory page	328
c. Secondary memory and Virtual memoryd. ROM and RAM	
193. Given an	
m-digit base b number x, theof x is	
$\mathbf{x}^{c} = (\mathbf{b}^{m} \mathbf{I} \mathbf{x}) \mod \mathbf{b}^{m}$	
a. Radix Compliment page 304	
b. Diminished Radix Compliment c. Signed Magnitude Form	
c. Signed Magnitude Form	
d. Biased Representation	\
194. For of an error we just need to know that there exist	sts an
a. Detection page 297	
error.	
b. Correction	
c. Both Correction and Detection	
d. None of the given	
is much faster than EPROM.	
a. Main memory	
b. Rom	
c. Hard disk	
c. Hard disk d. Flash Memory page 321 196. CRC has overhead as compared to Hamming code.	
a. Equal	
b. Greater	
c. Lesser page 298d. None of the given	
197. very large page size results in increased	
a. Through put	
b. access time page 330	
c. Delay	
c. Delay	

198. For write to complete in Write through, the CPU has to wait. This wait
stateis called
a. Write Buffer
b. Cache Miss
c. Write Allocate
d. Write Stalls page 327
199. Thesignal coming from the CPU tells the memory that some
interaction is required between the CPU and memory.
a. REQUEST page 316
b. R/W
c. COMPLETE
None of the given
200. A 64kx1 Static RAM Chip has a cell array which consists of
row(s) andcolumn(s). a. 64, 1 b. 1, 64 c. 64, 256
a. 64, 1
b. 1, 64
d. 256, 256 page 317
201chips have quartz windows and by applying ultraviolet light data
can be erased from them.
a. PROM
Flash Memory
c. EPROM page 321
d. EEPROM
202 is the concept in which a process is copied into the main memory
from the secondary memory according to the requirement.
a. Paging
b. Demand Paging page 329
a. Paging b. Demand Paging page 329 c. Segmentation d. Logical Partition 202 In virtual memory mechanism, pages are formulated in the
203. In virtual memory mechanism, pages are formulated in the
memory and brought into thememory.
a. Secondary, cache
b. Main, cache
c. Main, secondary
d. Secondary, main page 328

d.

b.

204. Which is a status bit that indicates whether the block in cache has been	
modified or not modified?	
a. Presence bit	
b. Dirty bit page 327	
c. Access bit d. End bit	
205refers to the fact that once a particular data item is acce	ssed
it is likely that it will be referenced again within a short period of	
time.	
a. Spatial Locality	
b. Temporal Locality page 322	
c. Full Locality d. Half Locality	
206. combination of parallel and sequential hardware used to build a	
multiplieris known as	
i. Parallel Array Multiplier	
ii. Both Recording	
iii. <mark>Series Parallel Multiplier</mark>	
iv. None of the given	
207. Whensignal is high, this would correspond to a read operation	n
equivalent to having an input data to the CPU and output from the	
memory.	
a. R/W page 316	
b. COMPLETE	
c. REQUESTd. None of the given	
208. The is m-bits wide and contains memory address generated	hv
the CPU directly connected to the m-bit wide address bus Booth	Оу
Recording	
a. memory address register (MAR) page 316	
b. memory Buffer Register(MBR)	
c. Program counter (PC)	
d. Instruction Register(IR)	
209. Adding an address pin to a memory chip increases the capacity of	
memoryby a factor of	
a. 1.5	
b. 2 page 320c. 2.5	
c. 2.5 d. 3	

_	AL-JUNAID TECH INSTITUE
•	210is a read-mostly memory that can be written into at any timewithout erasing prior contents
	a. PROM
	b. EPROM
	c. Flash Memory
	d. EEPROM page 321 211. A 16kx4 Static RAM Chip is arranged in the form of four memory
	cells
	a. 64x256 page 318
	b. 16x4
	c. 4x16
	d. 256x256
	212is the simplest form for representing a signed number
	a. Biased Representation
	b. Diminished Radix Compliment Form
	c. Sign Magnitude Form page 304
	d. None of the given
	213. The Direct memory access (DMA) scheme results in direct link
	between and .
	a. the CPU and the physical memory
	b. main memory and secondary memory page 331
	c. Secondary memory and Virtual memory
	d. Cache memory and Registers
	An entire memory can be erased in one or a few
	seconds whichis much faster than EPROM.
	a. PROM
	b. Cache 0304-1659294
	c. EEPROM d. Flash page 321
	d. Flash page 321
215.	refers to the fact when a given address has been referenced,
	the next address is highly probable to be accessed within a short period of
	time
	a. Temporal Locality
	b. Spatial Locality page 322
	c. Full Locality
	d. Half Locality

AL-JUNAID	TECH INSTITUI
216. Asignal decides	s whether the input word should be
shifted orbypassed.	
a. Control Read	
b. shift/bypass	page 312
c. Control Writed. None of the given	
e	eed carry out from the previous stage to the
next stage and so on.	sed early out from the previous stage to the
a. Ripple Carry Adder	page 308
b. Carry Look Ahead Add	• 5
c. Complement Adder	
d. 2's Complement Adder	
_	inary Floating Point Representation the
exponent is	THETTINGS
- IN The	10/72
a. 8 bits	page 313
b. 11 bits	
c. 1 bit	
d. 23 bits	
	issued by the CPU is translated from the
logical address space to_	
a. Effective address	maga 229
b. Physical addressc. Virtual address	page 328
d. Cache address	
220are computed	by the ALU and stored in processor status
register.	304-1659294
a. Condition codes	page 311
b. Conditional Branches	10 CO'
c. Fraction Division	ılmshelP.
d. None of the given	page 311 ulmshelp.com
221. In, bits are encod	led in pairs so there are only 'n/2' addition
instead of 'n'.	

page 309

b. Bit Pair Recording
c. Integer division

d. None of the given

a. Booth Recording

	AL-JUNAID TECH INSTITUE
	is a combination of arithmetic, logic and shifter unit along withsome
	multiplexers and control unit.
	a. Barrel Rotator
	b. Control Unit
	c. Flip Flop
	d. ALU page 313
223. 7	The cache contains a copy of portions of the
	a. Main memory page 321
	b. Rom
	c. EPROM
	d. Flash memory
	224. What is the basic idea of "carry look ahead"?
	a. To reduce congestion
	b. To speed up the ripple carry page 308
	c. To solve the redundancy d. To synchronize with CPU clock
	225. Along with the information bits we add up another bit which is called the
	bit.
	a. CRC
	b. Hamming
	c. Error Detection
	d. Parity page 297
226. Y	Virtual memory acts as a cache between and
	a. Secondary memory and Virtual memory
	b. Cache memory and Registers
	c. ROM and RAM
	d. Main memory and secondary memory page 328
	Villauche P
	227 Please choose one Which one of the following is the memory organization of SRC processor?
	• 2^8 * 8 bits
	• 2^16 * 8 bits
	 2³² * 8 bits (Page 46) 2⁶⁴ * 8 bits
	228. Please choose one Type A format of SRC usesinstructions
	• Two (Page 47)
	• three

229. - Please choose one The instruction ------ will load the register R3 with the contents of the memory location M [PC+56]

• Add R3, 56

- lar R3, 56
- ldr R3, 56 (Page 47)
- str R3, 56
- 230. Please choose one Which format of the instruction is called the accumulator?
 - 3-address instructions
 - 2-address instructions
 - 1-address instructions (Page 32)
 - 0-address instructions
- 231. Please choose one Which one of the following are the code size and the Number of memory bytes respectively for a 2-address instruction?
 - 4 bytes, 7 bytes
 - 7 bytes, 16 bytes (Page 36)
 - 10 bytes, 19 bytes
 - 13 bytes, 22 bytes
- 232. Please choose one Which operator is used to name registers, or part of registers, in the Register Transfer Language?
 - := (Page 66)
 - &
 - %
 - ©
- 233. Please choose one The transmission of data in which each character is self-contained units with its own start and stop bits is -----
 - Asynchronous
 - Synchronous
 - Parallel
 - All of the given options
- 234. Please choose one Circuitry that is used to move data is called ------
 - Bus
 - Port
 - Disk
 - Memory
- 235. Please choose one Which one of the following is NOT a technique used when the CPU wants to exchange data with a peripheral device?
 - Direct Memory Access (DMA).
 - Interrupt driven I/O
 - Programmed I/O
 - Virtual Memory (Page 268)
- 236. Please choose one Every time you press a key, an interrupt is generated. This is an example of
 - Hardware interrupt (Page 275)
 - Software interrupt
 - Exception
 - All of the given
- 237. Please choose one The interrupts which are pre-programmed and the processor automatically finds the address of the ISR using interrupt vector table are
 - Maskable
 - Non-maskable
 - Non-vectored
 - Vectored (Page 277)
- 238. Please choose one Which is the last instruction of the ISR that is to be executed when the ISR terminates?
 - IRET (Page 278)

- IRQ
- INT
- NMI
- 239.- Please choose one If NMI and INTR both interrupts occur simultaneously, then which one has the precedence over the other
 - NMI (Page 279)
 - INTR
 - IRET
 - All of the given
- 240. Identify the following type of serial communication error condition: The prior character that was received was not still read by the CPU and is over written by a new received character.
 - Framing error
 - Parity error
 - Overrun error (Page 240)
 - Under-run error
- 241. the device usually means reading its status register every so often until the device's status changes to indicate that it has completed the request.
 - Executing
 - Interrupting
 - Masking
 - Polling
- 242. Please choose one Which I/O technique will be used by a sound card that may need to access data stored in the computer's RAM?
 - Programmed I/O
 - Interrupt driven I/O
 - Direct memory access(DMA)
 - Polling
- 243. Please choose one For increased and better performance we use _____ which are usually made of glass.
 - Coaxial Cables
 - Twisted Pair Cables
 - Fiber Optic Cables (Page 390)
 - Shielded Twisted Pair Cables
- 244. Please choose one In_____if we find some call party busy we can have provision of call waiting.
 - Delay System (Page 381)
 - Loss System
 - Single Server Model
 - None of the given
- 245. In_____technique memory is divided into segments of variable sizes depending upon the requirements.
 - Paging
 - Segmentation (Page 365)
 - Fragmentation
 - None of the given
- 246. Please choose one For a request of data if the requested data is not present in the cache, it is called a _____
 - Cache Miss (Page 358)
 - Spatial Locality
 - Temporal Locality
 - Cache Hit
- 247. Please choose one An entire_____memory can be erased in one or a few seconds which is much faster than EPROM.

• PROM

Associative MappingBlock Placement

• Cache
• EEPROM
• Flash Memory (Page 356)
248 Please choose onechips have quartz windows and by applying ultraviolet light data can be erased from
them.
• PROM
• Flash Memory
EPROM (Page 356)EEPROM
249 Please choose one Thesignal coming from the CPU tells the memory that some interaction is required
between the CPU and memory.
• REQUEST (Page 350)
• COMPLETE
None of the given
250 is a combination of arithmetic, logic and shifter unit along with some multiplexers and control unit.
Barrel Rotator]
• Control Unit
• Flip Flop
• ALU (Page 347)
251 Please choose one In Multiple Interrupt Line, a number of interrupt lines are provided between the
modules.
• CPU and the I/O (Page 283)
CPU and Memory
Memory and I/O
• None of the given
252 Please choose one The data movement instructions data within the machine and to or from
input/output devices.
• Store
• Load
• Move
• None of given (Page 141)
253 Please choose one CRC hasoverhead as compared to Hamming code.
• Equal • Greater • Lesser (Page 329)
• Greater
• Lesser (Page 329)
None of the given
254 Please choose one The is w-bit wide and contains a data word, directly connected to the data bus
which is b-bit wide memory address register (MAR).
• Instruction Register(IR)
• memory address register (MAR)
• memory Buffer Register(MBR) (Page 350)
• Program counter (PC)
255. Intechnique, a particular block of data from main memory can be placed in only one location into the
cache memory.
Set Associative Mapping
• Direct Mapping (Page 360)

25	Please choose oneindicate the availability of page in main memory.
	Access Control Bits
	• Used Bits
	• Presence Bits
	• None of the given
25	. TheRTN describes the overall effect of instructions on the programmer visible registers.
	• Abstract
	• Concrete
	 Absolute
	 Basic
25	c Please choose one The instruction set is ofimportance in governing the structure and function of
	the pipeline.
	• Least
	• Primary
	Secondary No.
	• No
	• Uestion
25	
	• MIPS
	Instruction Count
	Number of registers
	Clock Speed
26	
20	and Read/Write.
	• ALU
	• Bus
	 Register Memory Cell (Page 351)
26	
20	
	behavior.
	• Register transfer
	Memory transfer
	• Execution (5) (3) (4 - 16 5 9 2 9 4
	• Logical
26	2 Please choose one TheRTN describes detailed register transfer steps
	in the data path that produce the overall effect.
	Abstract
	• Concrete
	• Absolute
	• Basic
26	Please choose one All members of the MC68000 family are
	processors.
	• <mark>32-bit</mark>
	• 16-bit
	• 64-bit
	• 8-bit
26	- Please choose oneOperations refers to a processor that can issue more than one instruction
	simultaneously.
	• Macro
	• Migro

	• Scalar
	Superscalar click here for detail
265.	- Please choose one Exceptions which areoccur in response to events that are paced by the
	internal processor clock.
	• Asynchronous
	Synchronous click here for detail
	• Internal
	• External
266.	- Please choose one In the hazard detection by hardware, resolved by pipeline stalls, if the instructions are in the
	adjoining stages, then the hazard must be detected in stage
	• 4
	• 2
	• <mark>5</mark>
267	Please choose one 16k x4 static RAM Chip is arranged in the form of four cells.
267.	Please choose one 16k x4 static RAM Chip is arranged in the form of fourcells. • 16x512
	• 32x512
	• 256x512
	• 64x256 (Page 352)
268.	- Please choose one In a DRAM cell, the storage capacitor will discharge in around
	• 4-15 ms (Page 354)
	• 2 - 10 ms
	• 5-20 ms
	• 10-25 ms
269.	Please choose one 1-bit sign, 8-bit exponent, 23-bit fraction and a bias of 127 is used forBinary
	Floating Point Representation
	Double precision
	• Single Precision (Page 348)
	All of above
	Half Precision
270.	- Please choose one The average rotational latency if the disk rotated at 20,000rpm is
	• 0.5 ms
	• 3.5 ms
	 2.5 ms 1.5 ms (Page 324)
	• 2.5 ms • 1.5 ms (Page 324) Ougstion No. 5 (Marker 2) Places above one A hard disk with 5 platters has 1024 tracks nor platter, 512
	VIII mahe Di
271.	Question No: 5 (Marks: 3) - Please choose one A hard disk with 5 platters has 1024 tracks per platter, 512
2,11	sectors per track and 512 bytes/sector. What is the total capacity of the disk?
	• 1.5 GB
	• 1 GB (Page 324)
	• 2 GB
	• 3 GB
272.	Where does the processor store the address of the first instruction of the ISR?
	• Interrupt vector (Page 277)

_, a separate address space of the CPU is reserved for I/O operations.

Isolated I/O (Page 236)

All of the given options

Interrupt request Interrupt handler

- Memory Mapped I/O
- All of above
- None of above

274. is the time needed by the CPU to recognize (not service) an interrupt request.

- Interrupt Latency (Page 279)
- Response Deadline
- Timer delay
- Throughput
- 275. _is a technique in which some of the CPU's address lines forming an input to the address decoder areignored.
 - Microprogramming
 - Instruction pre-fetching
 - Pipelining
 - Partial decoding (Page 255)
- 276. How can you define an interrupt?
 - A process where an external device can speedup the working of the microprocessor
 - A process where memory can speed up programs execution speed
 - A process where an external device can get the attention of the microprocessor
 - A process where input devices can takeover the working of the microprocessor
- 277. An interface that can be used to connect the microcomputer bus to ______is called an I/O Port.
 - Flip Flops
 - Memory
 - Peripheral devices (Page 234)
 - Multiplexers
- 278. A software routine performed when an interrupt is received by the computer is called as ------
 - Interrupt
 - Interrupt handler
 - Exception
 - Trap
- 279. Which one of the following methods for resolving the priority makes use of individual bits of a priority encoder?
 - Daisy-Chaining Priority
 - Asynchronous
 - Priority Parallel Priority (Page 281)
 - Semi-synchronous Priority
- 280. In which one of the following methods for resolving the priority, the device with the highest priority is placed in the first position, followed by lower-priority devices up to the device with the lowest priority, which is placed last in the series?
 - Asynchronous
 - Daisy-Chaining Priority
 - Parallel
 - Semi-synchronous
- 281. Identify the type of serial communication error condition in which A 0 is received instead of a stop bit (which is always a 1)?
 - Framing error (Page 240)
 - Parity error
 - Overrun error
 - Under-run error
- 282. Identify the following type of serial communication error condition in which no character is available at the

beginning of an interval.

- Framing error
- Parity error
- Overrun error
- Under-run error (Page 240)
- 283. _____is an electrical pathway through which the processor communicates with the internal and external devices attached to the computer.
 - Computer
 - Hazard
 - Memory
 - Disk
- 284. Connection to a CPU that provides a data path between the CPU and external devices, such as a keyboard, display, or reader is called-----
 - Processer
 - Program
 - Buses
 - memory address
- 285. VLIW stands for -----
 - Very Lengthy Interaction Word
 - Very Length Instruction Width
 - Very Long Instruction Word (Page 219
 -) none of given options
- 286. A -----is a wiring scheme in which, for example, device A is wired to device B, device B is wired to device C, device C is wired to device D etc.
 - Daisy chain
 - DMA
 - Interrupt driven
 - I/O Polling
- 287. Question # 8 of 10 (Total Marks: 1) Select correct option: An -----is the memory address of an interrupt handler.
 - Interrupt vector
 - Interrupt service routine
 - Exception
 - Mask
- 288. The conversion of numbers from a representation in one base to another is known as
 - Radix Conversion (Page 333)
 - Number Representation
 - Decimal representation
 - Hexadecimal Representation
- 289. If an interrupt is set by the timer component or by the peripheral device then how would you categorize it?
 - Hardware
 - Software
 - Exception
 - All of the given options
- 290. : 1 In which one of the following interrupts the device have to supply the address of the subroutine to the
 - Microprocessor
 - Maskable
 - Non-maskable click here for detail
 - Non-vectored Vectored
- 291. interrupts are usually associated with the software

	AL-JUNAID IECH INSIIIUE
	• Hardware
	• <mark>software</mark>
	• Machine
	• internal
292.	When the address of the subroutine is already known to the Microprocessor then it is called asinterrupt.
	• Maskable
	 Non-maskable
	 Non-vectored
	• Vectored
293.	How Interrupt driven I/O is better than polling because?
	Interrupt driver I/O is easy to design
	• Interrupt driver I/O is enhanced version of polling.
	• Interrupt driver I/O does not waste time on checking which device is available. (Page 274)
	Interrupt driven I/O is easy to program.
294.	In Single-Precision Binary Floating Point Representation the exponent is
	• 8 bits (Page 348)
	• 11 bits
	• 1 bit
	• 23 bits
295.	: Theis m-bits wide and contains memory address generated by the CPU directly connected to the m-bit
	wide address bus Booth Recording
	• memory address register (MAR) (Page 350)
	memory Buffer Register(MBR)
	Program counter (PC)
	• Instruction Register(IR)
296.	A combination of parallel and sequential hardware used to build a multiplier is known as
	Parallel Array Multiplier
	Booth Recording
	• Series Parallel Multiplier (Page 342)
	None of the given
297.	The register file is a collection ofbit wide registers used for data transfer between memory and the CPU .
	• 8
	• 16
	• 32 (Page 350)
	• 64
298.	 32 (Page 350) 64 The of an m digit number x is xc'=bm-1- x Radix Compliment Diminished Radix Compliment (Page 337)
	Radix Compliment
	• Diminished Radix Compliment (Page 337)
	Signed Magnitude Form
	Biased Representation
299.	Shifting of the radix point towards left or right is called
	• Shifting
	Logical Shift
	Right Shift
	• Scaling (Page 335)
300.	Question # 7 of 10 (Total Marks: 1) Select correct option: Inadder circuit we feed carry out from the
	previous stage to the next stage and so on.
	• Ripple Carry Adder (Page 341)
	Carry Look Ahead Adder

Complement Adder

	• 2's Complement Adder
301.	are computed by the ALU and stored in processor status register.
	• Condition codes (Page 334)
	Conditional Branches
	Fraction Division
	• None of the given
302.	Asignal decides whether the input word should be shifted or bypassed
	Control Read
	• Shift/bypass (Page 346)
	Control Write
	None of the given
303.	Along with information bits we add up another bit which is called thebit.
	• CRC
	Hamming
	Error Detection
	Parity (Page 328
304.	Inrecording ,bits are encoded in pairs so there are only 'n/2' additions instead of 'n'.
	Booth Recording
	Bit Pair Recording (Page 343)
	Integer division
	None of the given
305.	signal is high, this would correspond to a read operation equivalent to having an input data to the
	CPU and output from the memory REQUEST.
	• R/W (Page 350)
	• COMPLETE
	• REQUEST
	None of the given
306.	Given an m-digit base b number x, the of x is $xc = (bm-x) \mod bm$
	• Radix Compliment (Page 337)
	Diminished Radix Compliment
	Signed Magnitude Form
	Biased Representation
307.	Forof an error we just need to know that there exists an error.
	• Detection (Page 328)
	• Correction
	Both Correction and Detection
	 Detection (Page 328) Correction Both Correction and Detection None of the given In Double-Precision Binary Floating Representation the function is
308.	
	• 23 bits
	• 52 bits (Page 348)
	• 1 bits
200	• 1 bit
309.	:is the simplest form for representing a signed number
	Based representation District A Bridge Consultance of France
	Diminshed Redex Complement Form Size Marriage Form (Proc. 220)
	• Sign Magnitude Form (Page 336)
210	• None of the given
310.	In computers, floating-point representation usesto encode significand, exponent and their sign in a
	• Decimal Numbers
	▼ DECHUZU INHUUCIN

- Binary Numbers (Page 347)
- Octal Numbers
- Hexa decimal Numbers
- 311. : Which one of the following registers store a previously calculated value or a value loaded from the main memory?
 - ► Accumulator
 - ► Address Mask
 - ► Instruction Register
 - ► Program Counter
- 312. Which one of the following portions of an instruction represents the operation to be performed?
 - ► Address
 - ► Instruction code
 - ► Opcode (Page 33)
 - ► Operand
- 313. _____control signal enable the input to the PC for receiving a value that is currently on the internal processor bus.
 - ► LPC (Page 172)
 - ► INC4
 - ▶ LC
 - ► Cout
- 314. What is the instruction length of the FALCON-E processor?
 - ▶ 8 bits
 - ► 16 bits
 - ▶ 32 bits (Page 134)
 - ▶ 64 bit
- 315. Which type of instructions enables mathematical computations?
 - ► Arithmetic (Page 92)
 - ► Control
 - ▶ Data transfer
 - ▶ None of the given
- 316. What is the instruction length of the SRC and Falcon E processor?
 - ▶ 8 bits
 - ▶ 16 bits
 - **▶** 32 bits (Page 134)
 - ► 64 bits
- 317. : An instruction that specifies one operand in memory and one operand in a register would be known as a _____address instruction.
 - **▶** 2-1/2
 - ► 1-1/2 (Page 37)
 - ▶0
 - ▶2
- 318. In floating point representations _____ is also called mantissa.
 - **►** Sign
 - **▶** Base
 - ► Significant (Page 347)
 - **►** Exponent
- 319. What should be the behavior of interrupts during critical sections?
 - ► Must remain disable (Page 197)
 - ► Must remain Enable
 - ► Can be either enable or disable

- ▶ only important interrupts be enable
- 320. Which one of the following is a binary cell capable of storing one bit of information?
 - **▶** Decoder
 - ► Flip-flop (Page 76)
 - ► Multiplexer
 - **▶** Diplexer
- Which type of instructions load data from memory into registers, or store data from registers into memory and transfer data between different kinds of special-purpose registers?
 - ► Arithmetic
 - **▶** Control
 - ► Data transfer (Page 88)
 - ► Floating point
- 322. What does the RTL expression [M(1234)] means?
 - ► The contents of memory whose address is 1234.
 - ► The contents of data register 1234
 - ► The effective address of register 1234
 - ▶ The address of memory whose address is 1234.
- 323. Which one of the following languages presents a simple, human-oriented language to specify the operations, register communication and timing of the steps that take place within a CPU to carry out higher level (user programmable) instructions?
 - ► Assembly Language
 - ► OOP(Object Oriented Language)
 - ► RTL (Register Transfer Language)
 - ► UML(Unified Modeling language)
- 324. Which one of the following instructions is used to load register from memory using a relative address?
 - ▶ la
 - ▶ lar
 - **►** Idr (Page 145)
 - ▶ str 23
- 325. Taking control of the system bus for a few bus cycles is known as
 - **▶** Bus Stealing
 - ► Cycle Stealing (Page 317)
 - ► Cycle Transfering
 - ► None of given
- 326. : In ----- address mode, the actual data is stored in the instruction.
 - **▶** Direct
 - ► Indirect
 - **►** Immediate
 - ► Relative
- 327. Keyboard Interrupt (INT 9) is an example of ----- interrupt.
 - ► Hardware
 - ► Software
- 328. user program has to delete a file. The user program will be executing in the user mode. When it makes the specific system call to delete the file, an interrupt will be generated, this will cause the processor to halt its current activity and switch to supervisor mode. Once in supervisor mode, the operating system will delete the file and then control will return to the user program. This is an example of
 - ► Hardware interrupt
 - ► Software interrupt (Page 275)
 - **►** Exception

- ► All of the given
- 329. By which file extension does the FALCON-A Assembler loads a FALCON-A assembly file?
 - ► .asmfa (Page 8)
 - ▶ .org
 - ▶ .exe
 - ▶ .src 24
- 330. All -----interrupts have priority over all-----interrupt
 - ► internal, external (Page 279)
 - ▶ external, internal
- 331. The----- can also be used anywhere in the source file to force code at a particular address in the memory.
 - ▶ .end directive
 - ▶ .start directive
 - ▶ .org directive (Page298)
 - ▶ .label directive
- 332. : In this figure, the constant value specified by the immediate field is added to the register value, and the resultant is the index of memory location that is referred i.e. Effective Address = A + (content of R). Identify the addressin mode.
 - **▶** Displacement (Page 139)
 - **▶** Immediate
 - ► Indexed
 - ► Relative
- 333. In which one of the following addressing modes, the operand does not specify an address but it is the actual data to be used.
 - **▶** Direct
 - ► Indirect
 - ► Immediate click here for detail
 - ▶ Relative 25
- 334. : When is the "Divide error interrupt generated?
 - ► When an attempt is made to divide by decimal number
 - ► When an attempt is made to multiply by zero
 - ▶ When an attempt is made to divide by zero (Page 197)
 - ► When negative number is stored in a register
- 335. Which one of the following is a term used to describe a storage systems' resilience to disk failure through the use of multiple disks and by the use of data distribution and correction techniques?
 - ► Interrupt handling
 - ► Programmed I/O
 - ► Polling
 - ► RAID click here for detail
- is the time for first bit of the message to arrive at the receiver including delays.
 - ► Transmission Time
 - ► Latency
 - ► Transport Latency\
 - ► Time of Flight (Page 388)
- 337. Falcon-A Simulator loads a FALCON-A binary file with a _____extension and presents its contents into different areas of the simulator.
 - ▶ .bin
 - ► .binfa (Page 5)
 - ► .fa
 - ► None of the given

WAW and -----

- ► None fo the given
- ► WAR
- ► RAW
- ► RAR

